Derivation of test data curve fits - NO_X vs O₂

A linear correlation was used to derive the NO_{χ} relationship to flue gas O_2 for each overfire damper setting. A least squares curve fit was used to fit a straight line through the NO_{χ} data using the equation:

$$y = mx + b$$

where y is the stack NO_X (#/mbtu), x is flue gas O_2 %, and, m and b are constants.

The following tables show the test NO_X data points, derived constants, and r^2 values for each OFA damper setting test series.

No Overfire Air	
%O2	NOx
	(#/mbtu)
1.7	0.350
2.1	0.377
2.6	0.418
3.1	0.529
3.2	0.413
$r^2 = 0.6079$	
m = 0.0801	
b = 0.2136	

10% Overfire Air		
%O2	NOx	
	(#/mbtu)	
1.7	0.306	
1.9	0.327	
2.5	0.378	
3.0	0.438	
3.3	0.399	
r ² = 0.7961		
m = 0.0709		
b = 0.193		

12% Overfire Air	
%O2	NOx
	(#/mbtu)
1.9	0.342
2.5	0.382
2.7	0.417
3.0	0.382
$r^2 = 0.9344$	
m = 0.0658	
b = 0.2146	

14% Overfire Air		
%O2	NOx	
	(#/mbtu)	
2.0	0.314	
2.4	0.359	
2.7	0.377	
3.8	0.375	
$r^2 = 0.5849$		
m = 0.029		
h = 0.2772		